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ABSTRACT

The concept of closed convex cones in finite dimensional

Euclidian space and their duals has proven to be a useful con-

struct. Here dual cones are exhibited for specific closed, con-

vex cones including those pertaining to starshaped orderings and

concave (convex) functions.

Applications include finding projections involving star-

shaped orderings, generalizations of Kimball's inequality, an

inequality for concave (convex) functions and a characteriza-

tion of certain kinds of positive dependence.

AMS 1970 Subject Classifications: Primary 52A40

Secondary 52A20

Keywords and Phrases: Convex cones, dual cones, polars,

projections, starshaped orderings, concave (convex)

functions, Kimball's Inequality, positively dependent

random variables, order restrictions.



DUAL CONVEX CONES OF ORDER RESTRICTIONS WITH APPLICATIONS

1. INTRODUCTION

Several authors have made extensive use of the concept of

convex cones and their duals. Among these are Rockafellar (1970),

Robertson and Wright (1980) and Barlow and Brunk (1972). Here

we wish to specifically exhibit certain convex cones and their

duals and discuss the implications.

To be precise, we call K c Rn a convex cone if

a) x,y E K x + y c K, and

b) x £ K, a 2 0 a x c K.

Of course if K is a convex cone, so is - K = fx: - x £ K)

which we will call the "negative" of K.

Another important convex cone induced by K is the "dual" of

K. For a fixed positive vector w, the dual of K is given by

n
= fy:(x,y) = Zx.y.w. < 0 for all x c K}.

1 .111 -

(Some authors prefer the term "polar" to "dual." Some also define

the dual as the negative of our dual.) Of course if K is closed,

(w*)w*
(K )- = K.

It is evident that if K1 c K2 , K0 K W*

New convex cones can be formed from existing cones in several

ways. Two important methods are through intersections and direct

sums. (By the direct sum K1 + K2 we mean (x + y:x E KI,' E K2

A key relationship exists between intcrsections, direct sums
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and duals for closed convex cones. This relationship, as shown in

Rockafeller (1970) page 146, is

(K 1 n K 2 n ... n Km)+* = K K-* +...+ K ;1.1)

Some cones and their duals are quite simple. For example, if

K = fx;x 1 . 01,

then

= Zy 0, Y = y3 = "" = Yn= 01

for all w. The cone

K = (x;x . 0, i = 1,...,nl

is interesting in that

Ke* - -K.

Another important cone, especially in the area of isotone

regression, is the cone of vectors which are nondecreasing, i.e.

KI = fx:x I S x2  '" . Xn- (1.2)

The dual cone here, as discussed in Barlow and Brunk (1972), is

i n
KW = { Z yw. . 0, i = 1,...,n - 1, Z y.w. - 01. (1.3)

j~l ~ j=l

We note in passing that the important concept of majorization

as discussed extensively in Marshall and 01kin (1979) is closely

connected with the cone in (1.3). If the vectors x and y are each

ordered from largest to smallest to form R and k, x majorizes iff
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K1*

(We let I denote a vector containing all l's.) Further discussion

of such cone orderings is given in Marshall, Walkup, and Wets (1967).

If the cone specified in (1.2) is modified to require that it

contain only nonnegative vectors, i.e.,

K = I x:0 5. x I S< x 2 :_ .. . < x n,

the dual is equivalent to that given in (1.3) with a modification of

the last equality. In this case,
nK w *  {y: / Z _, i > ,.n

Much of our interest in dual cones hinges on a duality result

discussed in Barlow and Brunk (1972). In particular if g* solves

the problem

n 2
Minimize E (gi - xi) w. (1.5)
x c K i=l 1

where K is a closed convex cone, then g - g* solves

n 2
Minimize E (g. - x.) w.. (1.6)

we* i=1 1g 1i 1x £ Kw  il

Robertson and Wriqht (1980) make extensive use of this duality in

dealing with stochastic ordering restrictions for multinomial para-

meters. This duality is also important in deriving distributional

theory, i.e., see Robertson and Wegman (1978).
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2. THE STARSHAPED ORDERING

An interesting order restriction is that a vector be star-

shaped. Shaked (1979) defines a vector x to be lower (upper)

starshaped with respect to the positive weights w if

where

i j
x F x.w./ E w.. (2.1)

Sj= j=3

Shaked is concerned with finding maximum likelihood estimates

of Poisson and normal means which must satisfy starshaped restric-

tions.

Dykstra and Robertson (1981) use the term "decreasing (increas-

ing) on the average" when the nonnegativity restrictions in (2.1)

are omitted, and are concerned with such restrictions when testing

for trend.

Surprisingly the dual cone of "increasing on the average"

vectors is closely associated with the cone of "decreasing on the

average" vectors.

Theorem 2.1. If KIA = fx;-l 1 :L 2 > L 3in, then

IA

Proof. Note that we can write

K = x:xi - _ 0, i = l,...,n - 1)

n-1-
ni

4 - -
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where

K. = {x; x. - x+ 01. (2.2)

Now we claim that

i+l
H ~' ty 0 j. y= y., F y iw. 0, y. j 0j> i+1l}

(2.3)

equals K- . If Y E H.

where

i

If x c K. and y e H.,

n
(X, Y) = x

i

=yl [E .Wj x i+l Wil

by (2.2) and (2.3). Since is clearly K., we have that H. =Kf.

Since

n-i
nlK~) Kw* +..+ w

we need to show that

w* 1 + +Kw* f >: =Y .y2
+.. n-K1 2 V n.- 0).
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First assume x K , i = 1,...•n - 1. Then we may write
1-

xI= (Xl• - XlwlW2 • 0•.. .•0) (x I  _ 0)

-ix = (x2, X2, - x2W2 3 , 0,...,0) (x2  _ 0)

-1

x3 = (x3, x3, x3 f- x3 W 3w , 0•...,0) (x3 > 0)

n-l (x-l' n-l n-l' Xn- lWn-lW n l  n-

After adding coordinates we see that

E - (E ) = X. Z 0 i = 1,...,n - 1
-j i+l

and

~ = 0.

n

Thus

K !* +w* Yn

+ -l y Z I 2 k--  - -  1 .

Conversely• consider y =(yl. r..,yn) such that
- i

Y1 Z- Y2 >  "' n - = 0. Recalling that Wi  w.

we partition y as follows:

-- -
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i = W W 1 Z1, z1 , Op...,O)

-= - w3 W2 z2 ' - w3 W2 z 2 ' z 2 ' ,..0

x W W-1 z -iz - W-1z
3 4- w 3 z3 ' 4 w 3 z3 ' - 4W3 z3, z3,0..

w -1 zwW-1 z

nn- n- n- ... . n z 1 )nl'n

where

zi = y~ + W1 i jj
i+l

It can be verified that the i th column of the above array
n

sums to y. and that each row is such that Ex. .w. =0.

Finally we note that

yi-1 2 Y

i-i
SWi E yjwj L- W~j_,yjw

i-i w Wily
1 J j 1 1 ~

Therefore

i-i n
0 =W-l[ E yjw. + Eyjw.1

1 1 i

n
.?.Wjl(Wiy + EY w.

11

=y 1 + W jj, il
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so that

-1
-w W 1 z > 0,

and hence x. E Kw * . Thus we have that
-I 1

= O c K*+ + *
1 Y Y Y2 >- ' - Yn _'"

nKn-

so that equality holds.

The dual cones of lower and upper starshaped vectors discussed

by Shaked (1979) can also be found. First we handle the lower

starshaped vector.

Corollary 2.2. If K = x > x2 > " > --

then

w*

KLS T2{ Y: -- --< Y3 - .. <  01.

(Note that this dual also has the property that K S = -KS).
S LS

Proof. Note that
n

K = K n {x: E x.w. O} .
LS DA - 1 J

Since the dual of this last cone is

{': yl = Y2 = "'" = n o}, (2.2)
w* w*

the identity in (1.1) implies that KZS is the direct sum of KDA and

the cone in (2.2). This can be shown to be the desired cone.

The dual cone of the upper starshaped vectors is not quite as

elegant.

L ___...

, , . . , . " , ~ ~ ~ ~~~ ,,-- .. i.,,' ,:,.
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Corollary 2.3. If KUS =fx: 0< i< x 2 
- "'< Xn }1

then

yif

= {Y: y Y - Y Z W ) Z) y-wj :L 0 for i = 1,...,n - 1).~ 1 j=l

Proof. The proof follows by writing

KUS K IA n [x: x I 1_ 0-,

recognizing that

{x: xI > 0}1= (y: yl - 0, Y2 = Y3 = "'" = Yn = 01

and using (1.1) and Theorem 2.1.

3. THE CONCAVE ORDERING

A frequently occurring closed convex cone is Rn is the class

of concave (convex) functions Kcc(Kcv) defined on the set of real

numbers {Xl,--XnIn Thus a point y = (yl,---yn) c Rn is inter-

preted as the function whose image of xi is yi. If we let

6yi = yi+l-Yi and Ax. = x.+-x we can write

n-2KCC . 1
K = l H.

where

H. {y: 1 > }(3.1)

The dual cone of Kcc(KCV) is surprisingly tractable.

Theorem 3.1. The dual cone of the set of concave functions on

{X..., xn } is given by

Mali
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1

i> 0 =1,2,..n-2

Proof. The proof is similar to Theorem 2.1 in that we(32
W*

fistfid 7 n tenidntf
W* W* W*

1 2-- "n-2
w*

We first show Hi is equal to

Mi = z: z.=0, j / i ,i+, i+2, zwiAxi=z i+2wi+2Axi+l > 0,

i+2
E z.w. =0}j=i I1

Note that z c M. implies- 1

Axi+1 (Ax zw)+ AX i  (Ax )+ Ax i Ax i+1  il0
Axi+Ax i+ 1 i 1 Axi + Ax i+ 1  i+1Zi+2Wi+2 Ax.i+Ax Z 1i+lWi+I=0

or that

z.w.Ax=z w Ax. -Z w. (.+
ziw11 ii zi+2 i+2 i+1 i+l i+1 Ax+ Axi+i /

Thus for z e M. and h c Hi,

n
(z, h) = E z.h.w.

h.1 1 1 zi+ 2wi+ 2  Ax
I1 i+l

+ (-i~+.L~\ z. rh L+(Ax. Ax. i+lwli i+ A(x. Ax
i i+ i+1

ZwiAx+ 1 h l +
Ai Ax. i+l Ax xi+

z.w.Ax i Ah i+l Ah < 0

1 [Axj+]
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W*

by the definitions of H. and M.. Since clearly M_ = Hi, wew* 1 1 1

have that M = Ii.
1 1 w

If we let z= (z il'''.,Zn) E H. , it is possible

to show that

a) (Axi+Axi+l +AX i+2 )ziiw+(AXi+l +Axi+2 )zi,i+l Wi+l+AX i+2zi,i+2wi+2 = 0

and

b) (Axi +Ax i + l )zi i wi + Ax i+z i wi+lWi+ = 0.

n
These facts together with E z. w. =0 and z. w.Ax. > 0 enable

w* W

us to verify that H +...+ HI_2  is contained in the cone speci-

fied in (3.2). Conversely, any vector in the cone in (3.2) can be
w*

written as a direct sum of vectors from H7 , i = l,-.',n-2 which

completes the proof.

4. APPLICATIONS

Of course by their very definitions, a convex cone K and its

dual Kw * give rise to natural inequalities. In particular, if

x c K and y - z , Kw  then

n
E X (y zj)wj z 0. (4.1)

This has some straightforward implications in terms of sample co-

variances by taking w = 1.

Corollary 4.1. Suppose x, y and z are vectors in Rn . If

i i+l
1xj x, i = l,...,n - 1, and

1 ii -i4+ - 1.(4.2)

i i1 i+li y J J) z~ i yJ J' n .... 3

a-as"" A
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then the sample covariance of (x, y) is at least a$ large as the

sample covariance of (x, z).

Proof'. Condition (4.2) states that x e KDA. Condition (4.3)

implies that z - y c KIA which is equivalent to saying

(Z - y) - (z - y) c K- (where,a = (a, a,..,a)). Thus

n n n n
E(x. - T)(z i - Z) = E xi(z i - z) s Z xi(Yi - y) = r (x i - 3)(yi - j)
1 1 1 1 1

Of course if z = 0, this result is equivalent to saying that

if x, y C KDA(KIA) then

(x, y) nxy. (4.4)

Of course since KDA = -K IA, if x C KIA and y £ KDA (or vice

versa)

(x, y) < n xy

These inequalities are as strong as possible in the sense if

x f KDA(KIA), one can find a y £ KDA(KIA) such that (4.4) does

not hold. Note that (4.4) generalizes the well known result for

nondecreasing (nonincreasing) vectors.

Another application concerns Shaked's paper (1979). In this

paper Shaked wants to find a weighted least squares projection of

say g onto the cone KLS. However Shaked actually finds the projec-

tion, say g* onto the cone KDA and hopes that g* is in KLS (in which

case q* is also the projection onto K LS). However, if g* is not
n

in KLS, i.e., E gjw. < 0, one can say that the true projection 4
~n A

has the property that gw = 0 (see page 89, Barlow et al (1972)).
1 gw

In this case, we know that 9 must be the projection onto the dual

of KIA.

IA*________
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In this event (see (1.6)), g = g - g where g is the projection

of g onto KIA which is a problem that Shaked also solves. From

Shaked's solution we can verify that g - g* - i. Thus the

projection onto KLS is given by

n
g*, if Z g!*w > 0

A1

n
g* - gif E g*w. < 0.

A useful inequality discussed in Kimball (1951) and generalized

in various places such as Horn (i979) and Dykstra, Hewett, and

Thompson (1973) con cerns the expected value of a product of monotone

functions of a random variable. Thus, for example, if f, g are

nondecreasing (nonincreasing) functions,

Ef(X) * g(X) _ Ef(X) * Eg(X)

assuming the expectations are defined. We can develop similar types

of inequalities based upon closed convex cones and their duals.

Corollary 4.2. If f, g are real valued functions in the class

Ax ff: f(X) is integrable, E[f(X)I ]/P(X S_ x)

is nondecreasing over {x: P(X . x) > 0)1,

then

Ef(X)g(X) .. Ef(X) • Eg(X).

Proof. Suppose first that X is finitely discrete on the set

fXl...,Xn If we let w = (wit...,w n) where w. = P(X =x then

the condition that f c AX is equivalent to saying

(f(x1 ), f(x2 ),.... f(xn ) C K IA*
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If g £ Ax, Eg(X) - g must belong to KIA and the result follows.

In the general case, we let x n j  j = 0,...,k(n) be a series

of nested partitions covering the support of X which generate the

Borel sets in the support of X. We define

f(X) = i (E j IA ~ I Ah'(x) /wj

k (n)
gn(X) = E E g(X)IAn (X) " ,(x) /Wn, i

i 1 n,i n,i

where An,i= (Xn,i-lXn,i] and Wn,= P(X c An,i ) . (We take Xn,O =

Viewing fn (X) and gn(X) as conditional expectations, we can

use Theorem 5.21 of Breiman (1968) to argue that
L1

f n(X) -- f(X)
a.s.

and
L1

gn(X) -+ g(X).
a.s.

We have from the first part of the proof that

E f(X) Eg(X) = Ef n(X) Eg(X) < Ef n(X)gn() for all n.

Therefore if f is bounded above, by Fatou's lemma,

Ef(X)Eg(X) < 1imsupEfn(X) gn(X) iE limsup fn(X)gn(X) Ef(X)g(X).

(4.5)

I



15

Finally, noting that if h C AX , so does min{h, c) for any

positive constant c, we have the desired result for minff, m}

and minfg, m). Note that (4.5) guarantees that E[f(X)g(X)-] <

If E(f(X)g(X)+ ] =-, the desired result clearly holds, so we may assume

that f(X)g(X) is integrable. Finally, letting m- and using the

Dominated Convergence Theorem on each side concludes the proof.

We can obtain similar type inequalities by working with other

cones and their duals. For example, we can establish the following

corollary which is closely related to the basic lemma of Marshall

and Proschan (1970).

Corollary 4.3. If f is a real-valued nondecreasing function with

f(X) integrable and g is a real-valued function in the class

BX = {g: g(X) is integrable, E[g(X) .Iix)] S Eg(X) for all x},

then

Ef(X)g(X) Z Ef(X)g(X).

Proof. The proof follows the lines of Corollary 4.2 and is not

given.

Note that if we define the class of real-valued functions

Cx = fg; g(X) is integrable and g is nondecreasing),

then CXCAxCBx. Thus both Corollary 4.2 and Corollary 4.3 generalize

Kimball's inequality. The results of this section enable us to

obtain some insight into certain types of positive dependence as

discussed in Lehmann (1966) and elsewhere.
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Let us say that the random variables (X,Y) satisfy the

following kinds of positive dependence:

1) Type I if P(X < x, Y i_ y) _ P(X <. x)P(Y _< y) for all x, y,

2) Type II if P(Y > yjX . x) is nondecreasing in x for all y,

and

3) Type III if P(Y >_ yjX - x) is nondecreasing in x for all y.

Assuming that all quantities are defined, each of the above types of

dependence can be characterized by the inequality

Ef(X) * g(Y) . Ef(X) * Eg(Y) (4.6)

as shown in the following Theorem.

Theorem 4.1. Assume g c Cy. Then (X, Y) exhibits Type I, I, or

III dependence iff (4.6) holds for all f c Cx , Ax , or Bx respectively.

Proof. The result for Type I dependence is handled in Lehmann (1966).

For Type II, let

h(t) = P(Y >. yjX = t).

Then hcA iff
E[P(Y 4 yjX) I M-.Wx ]/P(X 1 X)

= P(Y 1 yx <5 x)

is nondecreasing in x. Thus if f also belongs to Ax , we have by

Corollary 4.2

E[f(X)h(X)] = Ef(Y) •I (yy) (4.7)

?.Ef(X) • P(Y 2 y), for all y.

Thus _ _. .. .... ........ . . ..._ _



17

Ef(XM E aiI y yi _ El(X) E a.P(Y -- Yi )

a. (Yzyi) .a

for all nonnegative a.. A passage to the limit will imply the

desired result for a nondecreasing g in Cy. If P(Y Z-- yIX >- x) is

not nondecreasing in x, then h 4 Ax which implies there is an

f C AX such that (4.7) does not hold.

The case of Type III dependence is handled similarly.

We note that while Type I dependence is symmetric in X and Y,

Types II and III are not as is evident from our characterizations.

In some sense, the size of the sets Cx , AX , and Bx is a measure of

the relative s&rengths of the dependence relations.

We can ut e the dual cones deriven in section 3 to obtain in-

equalities for ccncave(convex) functions somewhat similar to those

given in Corollary 4.2. To set some notation, we note that if the

random variables X and f(X) are square integrable, then the linear

function of X which is closest to f(X) in the sense of minimizing
2

E(f(X)-(aX+b)) is given by Zf(X) = afX + bf

where

af= E(Xf(X)) - E(X)Ef(X)af =2

ox
and (4.8)

bf = Ef(X) - afE(X)

as shown, for example, in Brunk (1965). It is well known that

Ef(X) = E tf(X) and EXf(X) = EX tf(X). Interestingly, if f and g

are both concave (convex) functions such that f(X) and g(X) are

integrable, then replacing f(X) and/or g(X) by their linear

approximations can only decrease the expected value of the product.

We begin with a more general result for discrete random variables.________
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Corollary 4.4. If the random variable X is finitely discrete

(on the values x 1 < x 2 <-''< x ), f is concave on the range1 2 n

of X and g is such that

1) Eg(X) = 0,

2) EXg(X) = 0,

3) E(x - X)g(X)I(x < x)> 0 for all x in the support of X,

then

Ef(X)g(X) < 0.

Proof. The proof follows directly from Theorem 3.1 by letting
w. = P(X = x.)

1 1

An important class of functions which satisfies the above

conditions is given in the following theorem.

Theorem 4.2. If g(x) is convex then g(x) - (a x + b ) (as de-

fined in 4.8) satisfies conditions 1), 2) and 3) of Corollary 4.4.

Proof. The proof is trivial if g is linear so assume that it

is not. It is easily shown that conditions 1) and 2) hold so we

consider condition 3). Now by the convexity assumption,

g(x) - (a x + b ) must be positive, negative and positive again.
g g

Thus E g(x.) -(a xj+bj must first be nonnegative and then non-
j=l g

positive as i increases from 1 to n. Thus g(x) - (a x +b ) is in
w*

the cone KI  (see 1.3) for the weights wi = P(X = x) . Since for

each i,h(x.) supfx i -x 01 is in -K1 (see 1.2), condition 3)

must hold by the definition of dual convex cones.

This leads to the following corollary which also holds for

the continuous case. Note that b) is similar to Kimball's Inequality

with monotonicity replaced by concavity (convexity).

Corollary 4.5. If f and g are both concave (convex) functions

such that X,f(X) and g(X) are all square integrable, then

I
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a) Ef(X)g(X) > Ef(X) (a X+bg) = E(afX+bf)(agX+b .

Moreover, if EXf(X) - EXEf(X) and EXg(X) - EXEg(X) have the same

sign, then

b) Ef(X)g(X) > Ef(X) Eg(X).

Proof. The first inequality follows by considering finer and

finer partitions of the support of X, noting that f and g are

concave on the partition points, and employing Theorem 4.2 and

Corollary 4.4 together with limiting arguments. The equality

in a) follows from ag x + b being both concave and convex.

Inequality b) then follows from Kimball's Inequality on the

last part of a).
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